Biological Background

The objects used in our modeling approach are based on well-known biological structures. For low resolution
modeling we use topologically associating domains (TADs) for Hi-C data and chromosome contact domains
(CCDs) for ChlA-PET data. TADs are megabase-sized regions with abundant interactions throughout the
region and substantially fewer interactions with other regions, which appear as clearly discernable blocks along
the diagonal of a Hi-C heatmap. CCDs are megabase-sized regions of dense ChIA-PET interactions, with no
more than a few interactions between CCDs. For high resolution modeling we use the anchor positions of
chromatin loops. For ChlA-PET we use the anchor positions of the identified PET interactions. Looping
interactions are harder to identify from Hi-C data because it is lower resolution, but there are algorithms which
attempt to identify these interactions from high resolution (1 kb) Hi-C data.

Experimental Input Data

A ChlA-PET experiment identifies genome-wide interactions mediated by a particular protein of interest, and
the main experimental result is the identification of the interaction regions (the ‘anchors’) and the frequency of
interaction between each anchor. The data is then divided into two categories by using a threshold on the
interaction frequency - interactions with PET counts below the cutoff are called “singletons” (because the
original experiments used a cutoff of two, hence, these were reads with a PET count of one), and interactions
with counts above the cutoff are simply called PET interactions. The appropriate cutoff primarily depends on
the sequencing depth, and will be different for different libraries. Additional statistical tests may be applied to
classify some statistically insignificant PET interactions as singletons, but we do not use this approach with our
data because the cutoff alone suffices to identify nearly all significant interactions.

Initially ChlA-PET experiments treated the singletons as noise and discarded them from further analysis, but
we have recently shown that singleton data recapitulates the low resolution heatmaps obtained in Hi-C
experiments. Thus, we now regard singleton data as representative of large-scale genome organization, and
we use singletons to model low resolution genome structures. To do so, we first create a Hi-C-like heatmap by
binning the singletons using CCDs as the bins. These heatmaps then give interaction frequencies between
CCDs which are used for modeling. (Details of the modeling are given below.)

Hi-C data is usually presented as heatmaps, which we coarse-grain according to TAD locations before using it
for low resolution modeling. Deeply sequenced Hi-C libraries can be used to perform high resolution modeling,
provided the interactions are classified into singletons and true interactions. There is no universally accepted
method for doing so, but we have found it useful to re-analyze raw Hi-C data as if it were ChlA-PET data to
identify binding sites and PET counts and perform the classification.

Genome Representation

We take advantage of the multiscale nature of ChlA-PET data by representing the genome as a hierarchical
tree structure, where the root node represents the whole genome and subsequent levels represent the genome
at increasing resolution - one level corresponds to individual chromosomes, the next level corresponds to
individual CCDs or TADs, the next corresponds to PET interaction anchors, and the final level includes
‘sub-anchors’ which are used to fill in the gaps between the anchors. At each level the chromosome is
represented by the classical “beads-on-a-string” model, where the beads correspond to the fundamental
biological unit at that level, either whole chromosomes, CCDs (TADs), or anchors. At the sub-anchor level the
beads are simply used to fill in the missing sections of the genome and do not have an associated functional
entity. We generally use 5-7 evenly spaced beads to define the sub-anchors. The beads at each level have a



parent-child relationship, where each low resolution bead is associated with higher resolution child beads
which span the same genomic region.

Heatmap Construction and Normalization

Interchromosomal heatmaps are generated by binning both interchromosomal PET interactions and singletons,
using the CCDs or TADs as the bins. Intrachromosomal heatmaps are generated by binning singleton data. It
is worth noting that these are unequal bins whose sizes are determined by the sizes of the CCDs. We have
argued (see Genome Research paper) that such binning is advantageous because it eliminates biases from
splitting single CCDs into multiple bins or assigning differing numbers of bins to different CCDs.

Aftering binning, the heatmaps are first normalized to account for unequal bin size. Given two bins with
genome sizes s;and s, (in Mb), we define a normalized interaction frequency as ?=flj/(sisj) , Where f;is the raw

interaction frequency. Next we rescale the heatmap so that each row contains the same total interaction
count. Such normalization is based on the idea that each genomic region should have equal “visibility,” and is
a common normalization technique for Hi-C data.

Structure Reconstruction
The general procedure of structure reconstruction is similar for each level, although level-specific details are
provided below. At each level we use the experimental data to define a preferred distance, d; between each

pair of beads, and then define an ‘energy’ which is a function of these distances and the actual distances

between each bead, r;, namely

E({ri}) = 0E e {ri}) + BEgua({ry}> {dy})
where the first term includes standard polymer interactions such as stretching and bending energies, and the
second term includes all additional interactions imposed by the experimental data. The exact energy function
and the method to compute preferred distances is different for each level, as detailed below. We work in a
top-down approach, first generating low resolution structures and then using these structures to initialize and
constrain higher resolution levels.

Chromosome and CCD Levels
Preferred interaction distances are derived from the heatmap interaction frequencies according to dl.j =cf:’

where f;;is the normalized interaction frequency, cis a scaling constant, and ais the scaling exponent. The

scaling constant and exponent are adjustable parameters which need to be tuned for each data set. The
scaling constant differs according to features of the heatmap, including bin size and average interaction
frequency. The scaling exponent can be approximated by various polymer models, but it is known that the
genomes of different species have different scaling exponents. We found o = 0.5 works well for our GM12878
dataset, but other values are common in the literature. Some of the calculated preferred distances are
unrealistically large for bins with lower interaction frequencies, and we cut off large distances according to

d= min(Edy;, day ), Where dg, is the average heatmap value and &is an adjustable parameter which we generally
set between 2 and 3.

The energy function is a simple harmonic potential, £ = 3(r; — dij)z, whereby the constraints are modeled as
i

springs connecting each pair of interacting beads. This function is minimized using a standard Monte Carlo
simulated annealing method.

At the chromosome level the beads are initialized randomly in the nuclear space. Simulated annealing is
performed for several initial configurations and the configuration with the lowest energy is selected as the best



structure. Atthe CCD level the beads are initiated at random positions within a sphere of radius R.with center

at the location of the chromosome bead. This initial configuration ensures that CCD beads begin near their
preferred position and thus speeds convergence of the simulated annealing algorithm.

We note that we do not currently use inter-chromosome singletons during the CCD level simulation. In
principle using these singletons would give structures which more reliably represent the relationship between
CCDs in different chromosomes. However, in practice the inter-chromosome data is very noisy, and it is not
evident how to select specific haploid interactions from the diploid heatmaps. Thus, the CCD level structures
are constructed independently of each other but with proper global positioning.

Anchor Level

Preferred distances are calculated from the PET interaction frequency between anchors as d; =& + e Pt
where B, v, and dare adjustable parameters. This relationship is purely phenomenological and was selected
to exponentially weight the PET interactions.

The energy function is identical to that used at the chromosome and CCD levels. Anchor positions are
initialized by positioning them randomly in a sphere centered on the CCD. It is worth noting that, by definition,
anchors only interact with other anchors in the same CCD. This allows the configuration of each anchor group
to be determined independently, which greatly decreases the optimization time.

Sub-anchor Level

At the sub-anchor level we consider several contributions to the energy in order to properly generate the loops
between anchors. First, in order to ensure that the physical size of a loop scales with its genomic span, we
include a term which imposes a larger distance between sequential sub-anchor beads separated by a larger
genomic span. All polymer models predict a power law relationship between arc length and physical size, and
thus we use d,,, = N {1, where N, is the number of base pairs between sub-anchors i and i+1. These

preferred distances contribute a term £, = >(r; ., —dl.,l.ﬂ)2 to the total energy. Next, we include a bending
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energy, which prevents excessive curvature. This energy is E;,,,=5>(1 =V, V,;,,) , where?V, ., is the unit

1

vector pointing from sub-anchor i to sub-anchor i+1.
It is known that chromatin interaction loops are heavily influenced by the orientation of CTCF binding motifs
(Rao et al. 2014; Tang et al. 2015). Based on this observation we reasoned that such sequence specific
orientation in chromatin looping could dictate the forms of loops, and thus propose the “hairpin” loops for
convergent motifs and the “coiled” loops for tandem motifs, respectively. We introduced the orientation of
CTCF binding motifs into our computational algorithm in the following way. The genomic orientation of a motif
(determined by whether the motif is directed upstream or downstream) is reflected in the structural, 3D motif
orientation, which is defined as a unit vector tangent to the chromatin curve at the location of the motif. The
vector points either “along” the fiber (from the 5’ to 3’ direction) or in the opposite direction, depending on the
genomic motif orientation. These directions correspond to rightward and leftward motifs, respectively. We
assume a pair of interacting anchors with CTCF motifs will preferentially align with their tangent vectors
pointing in the same spatial direction. To account for this interaction we include a third energy term based on
the orientation of interacting anchors, E,,, = _ ép(l —81.-6].) , Where G, is the orientation of the anchoriand P
iy
is a set of pairs of interactions in the current CCD.
These energy terms can be used to model smooth, circular loops passing through the fixed anchor beads, but
they do not account for interactions between sub-anchors in different loops. To determine the effect of these



interactions we build two heatmaps. First we use the intra-CCD singletons to construct a sub-anchor heatmap.
This heatmap is not directly used to compute preferred distances because it contains many null entries, which
are simply consequences of the sparseness of interaction data at extremely high resolutions. To impute these
missing values we construct several structures using just the distance and bending energies. For each
structure we construct a heatmap using the distance between each pair of loci, and then these heatmaps are
averaged to produce a consensus distance heatmap. Each entry in the distance map is then decreased in
proportion to the corresponding entry in the singleton heatmap to generate a refined distance heatmap, and

these reduced distances are used to define the fourth energy term, £, = >(r; — dl.j)2 . This term is similar to

E,,but the sum is over all pairs of beads instead of just over neighbors.

Comblnlng these terms we arrive at Esubanchor = Wdierdist + WbendEbend+ WU”’?EU"” + WhearEheat’ where Weaist» Whend »
Wwom , @and w, .., are weights assigned to particular energy terms.

Optimization algorithm

Monte Carlo simulated annealing proceeds in the conventional fashion, namely, at each step a random bead is
chosen and shifted by a vector drawn at random from a sphere of a specified radius. The new energy is
calculated and the move is accepted if E,., <E ;. If E,...> E_;, then the move is accepted with probability

P = exp(— Eq/(T E,;;)), where T is analogous to the temperature. This form differs from the Boltzmann form
typically used in Metropolis Monte Carlo simulations, but any form is acceptable for simulated annealing and
this form is convenient because it is insensitive to the magnitude of the energies and thus provides more
flexibility with parameter choices. The “temperature” is initialized to T, > 0, and is reduced after each step,

Tyew=xT,,, forsome k < 1. The simulation is checked every N, steps, and the simulation is stopped

milestone

when the energy decrease since the last milestone is below a user defined threshold.



